Effect of drainage on CO2, CH4, and N2O fluxes from aquaculture ponds during winter in a subtropical estuary of China.
نویسندگان
چکیده
Aquaculture ponds are dominant features of the landscape in the coastal zone of China. Generally, aquaculture ponds are drained during the non-culture period in winter. However, the effects of such drainage on the production and flux of greenhouse gases (GHGs) from aquaculture ponds are largely unknown. In the present study, field-based research was performed to compare the GHG fluxes between one drained pond (DP, with a water depth of 0.05m) and one undrained pond (UDP, with a water depth of 1.16m) during one winter in the Min River estuary of southeast China. Over the entire study period, the mean CO2 flux in the DP was (0.75±0.12) mmol/(m2·hr), which was significantly higher than that in the UDP of (-0.49±0.09) mmol/(m2·hr) (p<0.01). This indicates that drainage drastically transforms aquaculture ponds from a net sink to a net source of CO2 in winter. Mean CH4 and N2O emissions were significantly higher in the DP compared to those in the UDP (CH4=(0.66±0.31) vs. (0.07±0.06) mmol/(m2·hr) and N2O=(19.54±2.08) vs. (0.01±0.04) µmol/(m2·hr)) (p<0.01), suggesting that drainage would also significantly enhance CH4 and N2O emissions. Changes in environmental variables (including sediment temperature, pH, salinity, redox status, and water depth) contributed significantly to the enhanced GHG emissions following pond drainage. Furthermore, analysis of the sustained-flux global warming and cooling potentials indicated that the combined global warming potentials of the GHG fluxes were significantly higher in the DP than in the UDP (p<0.01), with values of 739.18 and 26.46mgCO2-eq/(m2·hr), respectively. Our findings suggested that drainage of aquaculture ponds can increase the emissions of potent GHGs from the coastal zone of China to the atmosphere during winter, further aggravating the problem of global warming.
منابع مشابه
Effect of controlled drainage in the wheat season on soil CH4 and N2O emissions during the rice season
The effect of draining crop fields during the wheat season on the soil CH4 andN2O emissions during the rice season in this article. There were four treatments:traditional cultivation during the wheat season + cultivation without fertilizationduring the rice season (CK1 field), traditional cultivation during the wheat season +traditional cultivation during the rice season (CK2 field), draining t...
متن کاملSnow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest
Soil–atmosphere fluxes of trace gases (especially nitrous oxide (N2O)) can be significant during winter and at snowmelt. We investigated the effects of decreases in snow cover on soil freezing and trace gas fluxes at the Hubbard Brook Experimental Forest, a northern hardwood forest in New Hampshire, USA. We manipulated snow depth by shoveling to induce soil freezing, and measured fluxes of N2O,...
متن کاملMethane, Carbon Dioxide and Nitrous Oxide Fluxes in Soil Profile under a Winter Wheat-Summer Maize Rotation in the North China Plain
The production and consumption of the greenhouse gases (GHGs) methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) in soil profile are poorly understood. This work sought to quantify the GHG production and consumption at seven depths (0-30, 30-60, 60-90, 90-150, 150-200, 200-250 and 250-300 cm) in a long-term field experiment with a winter wheat-summer maize rotation system, and four N a...
متن کاملSpatial Variability of CO2, CH4, and N2O Fluxes during Midsummer in the Steppe of Northern China
Spatial variability is a major source of uncertainty in estimating the fluxes of greenhouse gases between steppe and atmosphere. The fluxes of CO2, CH4, and N2O were carried out between 08:00 and 10:00 h. of the following day during the midsummer period from a transect (area: 5.25×10 ha) in the semiarid steppe of northern China, using the dark static chamber technique and gas chromatography. Tw...
متن کاملCombining two complementary micrometeorological methods to measure CH4 and N2O fluxes over pasture
New Zealand’s largest industrial sector is pastoral agriculture, giving rise to a large fraction of the country’s emissions of methane (CH4) and nitrous oxide (N2O). We designed a system to continuously measure CH4 and N2O fluxes at the field scale on two adjacent pastures that differed with respect to management. At the core of this system was a closed-cell Fourier transform infrared (FTIR) sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental sciences
دوره 65 شماره
صفحات -
تاریخ انتشار 2018